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Suboptimal physical properties have been identified as a particular shortcoming of compounds in

contemporary drug discovery, contributing to high attrition levels. An analysis of the relationship

between hydrophobicity (calculated and measured) and �100 k measured kinetic solubility values has

been undertaken. In line with the General Solubility Equation, estimates of hydrophobicity, particularly

ACD c log DpH7.4, give a useful indication of the likely solubility classification of particular molecules.

Taking ACD c log DpH7.4 values together with the number of aromatic rings in a given molecule provides

enhanced prediction. The ‘Solubility Forecast Index’ (SFI = c log DpH7.4 + #Ar) is proposed as a simple, yet

effective, guide to predicting solubility. Moreover, analysis of measured distribution/partition

coefficient values highlighted statistically significant shortcomings in the applicability of octanol/water

as a model system for hydrophobicity determination with poorly soluble compounds.
Introduction
The optimization of physical properties is fundamental to suc-

cessful drug discovery [1]. Aqueous solubility is a desirable prop-

erty to have in a drug molecule, facilitating delivery to and

subsequent interaction with the pharmacological target [2,3].

The hydrophobicity (the commonly used etymological synonym

of lipophilicity) of a compound is a measure of the preference of a

compound to reside in lipid over an aqueous environment; this

has an implied inverse link to aqueous solubility and is funda-

mental to many other interactions vital to achieving a potent and

selective pharmacological action. The crux of successful drug

discovery is almost invariably the achievement of a balance

between hydrophobicity-driven potency and hydrophilicity-dri-

ven pharmacokinetic and/or pharmacodynamic action. An esti-

mation of hydrophobicity is perhaps the key descriptor in the

design of potential drug molecules [4]; it is fundamental to

establishing structure–property relationships and to the many

predictive models of pharmacokinetic parameters used in med-

icinal chemistry [5,6]. In spite of the availability of high-through-

put methods for both the measurement and the prediction of

hydrophobicity, there is growing evidence that clinical candi-
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dates are generally somewhat overly hydrophobic, which is impli-

cated as an important factor in continuing high rates of attrition

in the drug development process [7].

The established model for measuring hydrophobicity involves

the partition or distribution of a compound between octanol and

aqueous buffers. Thus, intrinsic hydrophobicity (log P, log10 of the

partition coefficient) describes the partition of non-ionizable or

unionized forms of molecules between octanol and buffer; log P is

a constant for any given compound. Effective hydrophobicity

(log DpH, log10 of the distribution coefficient at a given pH) reflects

the distribution of all species present between the phases for a

given buffer pH (typically log DpH7.4 is quoted, i.e. at physiological

pH, 7.4). If a molecule has no ionizable centre then intrinsic and

effective hydrophobicity are equivalent, regardless of pH. Of

course, for ionizable compounds as pH varies, the relative propor-

tion of species will be dependent on the pKa of the basic and/or

acid centres. There are many in silico packages that predict log P

and, in conjunction with pKa values, log D can additionally be

estimated for any given pH. log P is the important factor in

determining binding being implicated in the promiscuity of overly

lipophilic molecules largely owing to entropy-driven non-specific

binding [7], whereas log DpH7.4 is implicated as a key descriptor in

modelling of absorption and metabolism properties [4–6].
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TABLE 1

Predicted log S (molar solubility) as a function of c log P and melting point combinations, calculated using the General Solubility
Equation.

Colouration by the aqueous solubility categories widely used within GSK (these classifications are used throughout).

[TD$INLINE] Red, poorly soluble (<30 mM).

[TD$INLINE] Yellow, intermediate solubility (30–200 mM).

[TD$INLINE] Green, good solubility (>200 mM).
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The precise interplay between solubility and other molecular

properties has been at the hub of physical chemistry in drug dis-

covery and open to debate. Indeed, recent literature [8–10] and the

solubility challenge [11,12] have seen many diverse solubility mod-

els proposed, generally based on hydrophobicity in combination

with other descriptors. The molecular descriptors of hydrophobi-

city, molecular weight and polar surface area are interrelated; thus,

careneeds tobe taken in interpreting data sets inwhich each of these

might be represented. The particular interrelationship between

hydrophobicity and solubility is investigated in this review.

The General Solubility Equation (GSE; Eq. (1)) succinctly links

solubility with hydrophobicity and melting point and has been

demonstrated to be a reasonable model for predicting solubility for

uncharged molecules [13].

Eq. (1) General Solubility Equation

log S ¼ �log P � 0:01 � ðM pt � 25Þ þ 0:5 (1)

The implications of this equation are illustrated in Table 1, in

which log S values are calculated using the GSE for particular log P

and melting point combinations pertinent to medicinal chemistry

[13], coloured by solubility categories. It is clear that hydropho-

bicity is the dominant parameter in solubilities predicted by the[(Figure_1)TD$FIG]
FIGURE 1

Distribution, by binning, of (a) measured and (b) calculated log DpH7.4 values for
GSE. For a medicinal chemist, it is easy to influence a change in

log P, whereas the melting point is harder to predict or influence –

and, indeed, in these days of high-throughput parallel chemistry,

it is very rarely measured.

The colour distribution in Table 1 highlights how fine a log P

divide there is between compounds with good and poor Solubility.

It is probably not coincidental that the average drug has a c log P of

2.5 [7] – this corresponds to the upper limit of where the GSE

predicts good solubility can be achieved. Likewise, poor solubility

in potential drug molecules is engendered by the trend towards

overly hydrophobic character recognized in contemporary med-

icinal chemistry [7]. Thus, it is pertinent to describe such com-

pounds as insoluble grease balls rather than brick dust

characterized by high melting lattices; this concurs with the find-

ings of Bergström et al. [14] in a recent study of poorly soluble

drugs. These values represent probable ‘worst case’ solubility

because any ionizable centres would be likely to enhance solubi-

lity. The GSE can be modified to reflect the contribution of charge

to solubility at any given pH by substituting log D for log P; this is

exemplified for pH 7.4 in Eq. (2). Increased ionization reduces

log D at a given pH, which consequently increases effective

aqueous solubility
compounds in this review.
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[(Figure_2)TD$FIG]

FIGURE 2

Plot of measured versus calculated log DpH7.4 values. Line of unity, black; line

of best fit, blue.

[(Figure_3)TD$FIG]

FIGURE 3

Box whisker plots comparing measured and calculated log DpH7.4 values.
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Eq. (2) GSE corrected for ionization at pH 7.4

log SpH7:4 ¼ �log DpH7:4 � 0:01 � ðM pt � 25Þ þ 0:5 (2)

To explore the relationship of hydrophobicity and solubility

further, a large data set was compiled for analysis, comprising

�100 k compounds submitted for the measurement of kinetic

aqueous solubility at pH 7.4. These represent a typical cross-section

of experimental molecules at GSK over the past three years. The

high-throughput method employed provides a good measure of the

kinetic solubility of compounds and performs to a higher degree of

precision than the three-box classification used in this review.

These solubilities were measured using an in-house method

[15] utilizing quantification via chemi-luminescent nitrogen

detection (CLND). This assay has a dynamic range between the

lower detection limit of 1 mM and 500 mM, governed by the

protocol’s 1:20 dilution into pH 7.4 phosphate buffer solution
[(Figure_4)TD$FIG]

FIGURE 4

Plot of measured versus calculated log DpH7.4 values, separated by solubility categor

(30–200 mM). (c) High solubility compounds (>200 mM).

650 www.drugdiscoverytoday.com
from nominal 10 mM DMSO stock. Within this set, �20 k com-

pounds also had hydrophobicity values measured in the octanol–

pH 7.4 buffer system using an in-house method [16]. Empirical

data were supplemented with calculated values for hydrophobi-

city {log P (Daylight [17] and ACD [18] software), log DpH7.4
y. (a) Low solubility compounds (<30 mM). (b) Medium solubility compounds
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(ACD)}; molecular weight and aromatic ring count [17] were also

included.

Presentation of data in the review
The outcomes of the data analyses are represented graphically in

several forms. Data plots with lines of best fit and unity gave a

representation of the data, albeit with a statistical analysis, which

did not adequately convey the distribution of data because of the

large numbers. The distribution of values was better conveyed

through normalized bar graphs and box plots using binned hydro-

phobicity and/or solubility values, which better represent the

distribution of data in a more visually amenable manner. In

addition, to visualize three variables, binned multiple pie

[(Figure_5)TD$FIG]

FIGURE 5

Box whisker plots comparing measured and calculated log DpH7.4 values separated b

200 mM). (c) High solubility (>200 mM).
chart categorizations were employed. Solubility categories are

consistently represented as described in Table 1, and numbers

above bars and pies represent the number of data points in

each bin.

Hydrophobicity: measured versus calculated
A disconnect between measured and calculated hydrophobicity

values was immediately apparent in this review. In particular, for

measured log DpH7.4 a small dynamic range was apparent, and

there was a clear plateauing of data for compounds predicted to be

more hydrophobic. Whereas calculated values indicated a range of

normally distributed values between �2 and +7 (Figure 1b), mea-

sured values for the same compounds were in a narrower range
y solubility category. (a) Low solubility (<30 mM). (b) Medium solubility (30–
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between �1 and +4, with a skewed distribution (Figure 1a). This

poor correlation is also evident in Figure 2, which demonstrates

the disconnect between the measured and calculated hydropho-

bicity, particularly for compounds with high calculated hydro-

phobicity. The relative crossover between the lines of unity and

best fit clearly support this notion. This is further reinforced in the

box plot of measured versus binned predicted values (Figure 3).

Starting from the most hydrophilic compounds, there is initially a

statistically significant rise with increasingly hydrophobic bins;

however, above c log DpH7.4 values of 3–4, there is a levelling off

and then a decrease.

The physical basis behind this discrepancy in measured and

calculated hydrophobicity became apparent when the solubility of

the compounds was considered. Poorly soluble (<30 mM) com-

pounds showed a very poor correlation between predicted and

measured log DpH7.4, as highlighted by the line of best fit

(Figure 4a; R2 = 0.11, slope = 0.18) compared with the line of unity.

With increasing solubility, however, the correlation clearly

improves; for intermediate solubility compounds (30–200 mM),

there was a marked improvement in the correlation between

[(Figure_6)TD$FIG]

FIGURE 6

Bar charts showing distribution of solubility category as a function of binned hyd

652 www.drugdiscoverytoday.com
measured and calculated values (Figure 4b; R2 = 0.32, slope = 0.36).

Although still statistically poor, the best correlation (Figure 4c;

R2 = 0.46, slope = 0.54) was obtained for highly soluble com-

pounds (>200 mM). These trends are further exemplified in the

solubility-categorized box plots of Figure 5. Indeed, for poorly

soluble compounds (Figure 5a), if log DpH7.4 is predicted between

3 and 7, there is no statistical difference between the average

measured values in each bin. These observations suggest that

factors contributing to poor aqueous solubility are somehow

perturbing the octanol/water system and preventing a true equili-

brium from being obtained. A possible explanation for this is the

tendency of poorly soluble compounds to form aggregates; this

has caused issues in other systems [19].

These data strongly suggest that any measured log D value

should be used only in the context of the solubility of the molecule

in question. Paradoxically, they also indicate that for poorly

soluble compounds, a calculated log D (or log P) is probably a

better indicator of true hydrophobicity than a measured value.

Historically, predictive models of hydrophobicity have been built

on databases of measured values, so one could surmise that better
rophobicity. (a) ACD log P. (b) ACD log DpH7.4. (c) Measured log DpH7.4.
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[(Figure_7)TD$FIG]

FIGURE 7

Distribution of measured kinetic solubility categories, binned by the number

of aromatic rings in each structure.
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models would be derived if only data from more soluble com-

pounds were incorporated. The octanol–aqueous buffer system has

been the hydrophobicity gold standard for many years, but it has

clear shortcomings in assessing compounds with lesser solubility
[(Figure_8)TD$FIG]
FIGURE 8

Pie chart matrix representation of solubility category as a function of ACD log Dp
(which, as the following sections demonstrate, will be likely to

have increased hydrophobicity).

Hydrophobicity and measured solubility
The distributions of measured solubility categories as a function of

various hydrophobicity descriptors are displayed in Figure 6. These

clearly display the expected trends of decreasing solubility with

increasing hydrophobicity as predicted by the GSE, as represented

in Table 1. The clearer stepped differentiation within the bands is

apparent when log DpH7.4 rather than log P is used, which reflects

the conisderable contribution of ionization to solubility.

Looking at solubility classifications by means of measured

log DpH7.4 bins (Figure 6c), a similar trend is observed to that with

calculated values; however, the discrimination between hydro-

phobicity bins is reflective of the limitations of the octanol/water

system as described above. In particular, the limited population of

the most hydrophobic bin should be noted.

Solubility and aromaticity: solubility Forecast Index
In recent publications, the negative impact of aromaticity on solu-

bility has been highlighted. The effect has been quantified using

three related descriptors: proportion of sp3 atoms [20], aromatic

proportion [21] and, more simply, the number of aromatic rings in a

structure [22]. This impact has been rationalized by complementary

explanations, invoking either an increase in lattice energy (and thus

higher melting point) owing to the p-stacking of the flat rings or the

reduced entropic contribution to the free energy of solvation and

melting owing to the inherently more rigid molecules [23,24].
H7.4 and aromatic ring count.
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[(Figure_9)TD$FIG]

FIGURE 9

Distribution of solubility category as function of ACD log DpH7.4 SFI.
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As demonstrated in the review by Ritchie and MacDonald [22],

several aromatic rings were associated with reduced solubility; this

trend was very clear in this analysis, too (Figure 7). The finding that

binned c log DpH7.4 showed enhanced resolution of solubility

classes (Figure 6) suggested a logical extension. Thus, the pie plot

with binned c log DpH7.4 and #Ar (Figure 8) clearly shows a more

pronounced solubility differentiation than using c log P and #Ar,

as employed in the earlier analysis [22]. In any given row or

column of Figure 8, the proportion of poorly soluble compounds

increases as either hydrophobicity or #Ar increases. This com-

pounding effect is further emphasized by the diagonal split

between regions of predominantly high and low solubility in

Figure 8. In fact, the division between these regions can reasonably

be described by the diagonal of c log DpH7.4 + #Ar = 5. This obser-

vation led to the formulation of the simplistic Solubility Forecast

Index, which supports the notion that if c log DpH7.4 + #Ar

< 5 then there is a reasonable chance of having good solubility.

Alternatively, the absolute SFI value can be related to a particular

bin, which indicates the probability of having poor, intermediate

or good solubility (Figure 9). This graded bar graph (Figure 9) can

be compared with that shown in Figure 6b to show an increase in
654 www.drugdiscoverytoday.com
resolution when considering binned SFI versus binned c log DpH7.4

alone. It is thus implicit that each aromatic ring in a molecule has a

solubility penalty equivalent to an extra log unit of hydrophobi-

city in addition to its intrinsic hydrophobicity value [and this is

the Daylight definition of #Ar, in which each aromatic ring

(benzenoid or heterocyclic) is counted and fused systems (e.g.

indole, naphthalene and purine) count as two rings].

In conclusion, the interrelationship of hydrophobicity and

solubility has been investigated with �100 k compounds with

measured CLND solubility and�20 k compounds with measured

octanol–pH 7.4 buffer hydrophobicity values. Most notably, it

has been demonstrated that the octanol–aqueous buffer model

for measuring hydrophobicity does not work well for poorly

soluble compounds. The octanol–buffer system works well for

more hydrophilic compounds with fewer aromatic rings, but this

clearly has shortcomings for more lipophilic and aromatic com-

pounds, which, implicitly, have lesser solubility. It is note-

worthy to consider that for molecules with hydrophobicity in

proximity to the median values for marketed drugs (c log P = 2.5

or c log DpH7.4 = 0.8) [7], these analyses strongly suggest that

they are likely to be soluble and have reliable measured hydro-

phobicity values. Furthermore, the effect of aromatic rings on

solubility was over and above their contributions to hydropho-

bicity, which led to simplistic concept of summing c log DpH7.4

and the number of aromatic rings (Solubility Forecast Index = -

c log DpH7.4 + #Ar). The SFI value provides a simplistic and read-

ily calculated indicator of the likely solubility category, implied

by the distribution of measured values in that particular bin;

conceptually, keeping SFI < 5 should be a powerful guide for

compound design in drug discovery, which gives a high prob-

ability of securing good physical properties. Given that the

average number of aromatic rings in oral drugs is 1.6 [22], their

average SFI would thus be 2.4. Finally, it is clear that solubility is

profoundly influenced by the hydrophobicity of a molecule,

thus the limits of the GSE or any other solubility predictor must

be governed by the quality of hydrophobicity estimates. As

demonstrated here, the octanol–aqueous buffer model for

hydrophobicity might not always be reliable.
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